

Implementing Abstractions
Part Two

Previously, on CS106B...

class OurStack {
public:
 OurStack();

 void push(int value);
 int peek() const;
 int pop();

 int size() const;
 bool isEmpty() const;

private:
 int* elems;
 int allocatedSize;
 int logicalSize;
};

private:
 int* elems;
 int allocatedSize;
 int logicalSize;

allocatedSize

logicalSize

 ☞

elems

Cleaning Up our Messes

Destructors
● A destructor is a special

member function
responsible for cleaning up
an object's memory.

● It’s automatically called
whenever an object’s
lifetime ends (for example,
if it’s a local variable that
goes out of scope.)

● The destructor for a class
named ClassName has
signature

~ClassName();

class OurStack {
public:
 OurStack();
 ~OurStack();

 void push(int value);
 int peek() const;
 int pop();

 int size() const;
 bool isEmpty() const;

private:
 int* elems;
 int allocatedSize;
 int logicalSize;
};

Getting More Space

 ☞

elems

 ☞

helper

allocatedSize = /* bigger */;
int* helper = new int[allocatedSize];

/* … move elements over … */

delete[] elems;
elems = helper;

Every push beyond the first
few requires moving all n

elements from the old array
to the new array.

Cost of doing n pushes:

4 + 5 + 6 + … + n = O(n2).

 4 Items
Moved

 5 Items
Moved

 6 Items
Moved

 7 Items
Moved

Question: How do we
speed this up?

Now, only half the
pushes we do will
require moving

everything to a new
array.

W
or

k
D

on
e

Operation Number

Increase array
size by adding

one.

W
or

k
D

on
e

Operation Number

Increase array
size by adding

two.

Half of our pushes take
time O(1) because there’s

free space left.

Half of our pushes take
time O(n) as we move

all the elements.

W
or

k
D

on
e

Operation Number

Increase array
size by adding

two.

W
or

k
D

on
e

Operation Number

Increase array
size by adding

two.

This roughly
halves the
work done.

If we make the new
array too big, we’re
might not make use
of all the new space.

What’s a good
compromise?

Idea: Make the new
array twice as big

as the old one.

This gives us a lot of
free space, and we

never use more than
twice the space we

need.

How do we analyze this?

W
or

k
D

on
e

Operation Number

Increase array
size by

multiplying
by two.

Most pushes take time
O(1) because there’s

free space left.

Infrequently, a push might
take time O(n) as we

move all the elements.

W
or

k
D

on
e

Operation Number

Increase array
size by

multiplying
by two.

Average cost of a push: O(1).

Total cost of doing n pushes: O(n).

Amortized Analysis
● The analysis we have just done is called an

amortized analysis.
● We reason about the total work done by allowing

ourselves to backcharge work to previous
operations, then look at the “average” amount of
work done per operation.

● In an amortized sense, our implementation of the
stack is extremely fast!

● This is one of the most common approaches to
implementing Stack (and Vector, for that matter).

Summary for Today
● We can make our stack grow by creating new

arrays any time we run out of space.
● Growing that array by one extra slot or two

extra slots uses little memory, but makes
pushes expensive (average cost O(n)).

● Doubling the size of the array when we run
out of space uses more memory, but makes
pushes cheap (amortized cost O(1)).

● In practice, it’s worth paying this slight space
cost for a marked improvement in runtime.

Your Action Items
● Read Chapter 11 and Chapter 12.1

● There’s a lot of useful information there
about dynamic memory allocation and class
design.

● Start Assignment 5.
● Aim to complete Debugging Warmups

tonight and String Simulation by Monday at
the start of lecture.

● Ask for help if you need it! That’s what we’re
here for.

Next Time
● No Class Monday 🇺🇸
● Then, When We Get Back…

● Hash Functions
– A magical and wonderful gift from the world of

mathematics.
● Hash Tables

– How do we implement Map and Set?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

